Fifteen Years of Clinical Experience with Hydroxyapatite Coatings in Joint Arthroplasty
Jean-Alain Epinette, MD
Michael T. Manley, PhD

Fifteen Years of Clinical Experience with Hydroxyapatite Coatings in Joint Arthroplasty

Preface by Rudolph G.T. Geesink, MD, PhD
Scientific Advisory Board

BAUER Thomas W, MD, PhD
CAPELLO William N, MD
D’ANTONIO James A, MD
GEESINK Rudolph GT, MD, PhD
OONISHI Hironobu, MD, PhD
TONI Aldo, MD
TONINO Alfons J, MD, PhD
WALTER William K, MB, BS, FRCS, FRACS

Contributors

ADREY José, ARGENSON Jean-Noël, AUBANIAC Jean-Manuel, BALAY Bruno,
BARRACK Robert L, BARRERE Florence, BAUER Thomas W,
BERTEAUX Daniel, BORDINI Barbara, BRYANT Dawanna R,
CABANELA Miguel E, CAPELLO William N, CARTIER Philippe,
CHATELET Jean-Christophe, COOK Stephen D, D’ANTONIO James A,
DACULSI Gérard, DAMBREVILLE Alain, DE GROOT Klass, DELECRIN Joël,
DEPREZ Pascal, DHERT Wouter JA, DUMBLETON John,
DUTHOIT Etienne, EPINETTE Jean-Alain, ETORE Pierre-Paul,
FUJIBAYASHI Shunsuke, FUJITA Hiroshi, GACON Gérard, GEESINK Rudolph GT,
GEORGE Marc, GIUNTI Armando, GOALARD Christian, GUERRA Enrico,
HABIBOVIC Pamela, HIVART Philippe, HUSSEIN Rami, JAFFE William L,
KEAST-BUTLER Oliver, LEVINE Harlan B,
LEYVRAZ Pierre-François, MANLEY Michael T., MASSIN Philippe,
MEIJERS Will, MORRIS Haydn, MUELLER Marion, NAKAMURA Takashi,
NOURISSAT Christian, OONISHI Hironobu, OOSTERBOS Kees JM,
OVERGAARD Søren, PASSUTI Norbert, PETER Bastian, PETIT Roland,
PHILIPPE Michel P, PIOLETTI Dominique P, RAHBEK Ole, RAHMY Ali,
RAKOTOMANANA Lalao R, RAY André, RUBIN Pascal, SANCHEZ-SOTELO Joaquin,
SCHAAFSMA Jelle, SEREKIAN Paul, SETIEY Louis, SHEPPERD John,
SIVERHUS Scott W, SØBALLE Kjeld, STEA Susanna, SUDANESE Alessandra,
SUTTON Kate, TAKAI Shinro, TAKIKAWA Satoshi, THÉRIN Michel, TILLIE Bruno,
TONI Aldo, TONINO Alfons J, TRAİNA Francesco, TSUTSUMI Sadami,
VAN DER LINDE Mathijs, VIDALAIN Jean-Pierre,
VOGELY Charles H., WALTER William K, WITPEERD Wendy D,
YOSHINO Nobuyuki, YOUNG David
Contributors

Adrey José, MD
Clinique Saint-Roch
5 rue Gerhardt
34000 Montpellier
France

Argenson Jean-Noël, MD
Aix-Marseille University
Department of Orthopaedic Surgery
Hôpital Sainte Marguerite
13009 Marseille
France

Aubaniac Jean-Manuel, MD
Aix-Marseille University
Department of Orthopaedic Surgery
Hôpital Sainte Marguerite
13009 Marseille
France

Balay Bruno, MD
Clinique Chirurgicale du Beaujolais
Route de Longsard
69400 Arnas
France

Barrack Robert L., MD
Professor of Orthopaedic Surgery
Director, Adult Reconstructive Surgery
Department of Orthopaedic Surgery
Tulane University School of Medicine
1430 Tulane Avenue, SL-32
New Orleans, Louisiana 70112
USA

Barrère Florence, PhD
IsoTis NV
P.O. Box 98
3720 AB Bilthoven
The Netherlands

Bauer Thomas W., MD, PhD
Departments of Pathology and Orthopedic Surgery
The Cleveland Clinic Foundation
Cleveland, Ohio, 44195
USA

Berteaux Daniel, MD
Clinique de la Présentation
64 bis rue des Fossés
45400 Fleury-les-Aubrais
France

Bordini Barbara, B Sci
Laboratorio Tecnologia Medca
Istituto Codivilla Putti
Via di Barbiano 1-10
40136 Bologna
Italy

Bryant Dawanna R., CFA
The Toledo Joint Replacement & Orthopaedic Center
2000 Regency Court
Suite 201
Toledo, Ohio 43623
USA

Cabanela Miguel E., MD
Department of Orthopedic Surgery
Mayo Clinic, 200 First St., S.W., Rochester MN 55905
USA

Capello William N., MD
Indiana University School of Medicine
542 Clinical Drive
Room 600
Indianapolis, IN 46202
USA

Cartier Philippe, MD
Clinique des Lilas
41-49 avenue du Maréchal Juin
93260 Les Lilas
France

Chatelet Jean-Christophe, MD
Polyclinique du Beaujolais
380 Route de Longsard
69400 Arnas
France

Cook Stephen D., PhD
Lee C. Schlesinger Professor
Director, Orthopaedic Research
Department of Orthopaedic Surgery
Tulane University School of Medicine
1430 Tulane Avenue, SL-32
New Orleans, Louisiana 70112
USA

D’Antonio James A., MD
Sewickley Valley Hospital
725 Cherrington Parkway, Suite 200
Moon Township, PA 15108
USA
Daculsi Gérard, PhD
Laboratoire de Recherche Biomatériaux-Tissus Calcifiés
Faculté de Chirurgie Dentaire
Université de Nantes
1, Place Alexis Ricordeau
44042 Nantes
France

Dambreville Alain, MD
21 avenue Jean Lorrain
06300 Nice
France

De Groot Klass, PhD
Biomaterials Research Group
School of Medicine
Leiden University
Rijnsburgerweg 10
2333 AA, Leiden
The Netherlands

Delecrin Joël, PhD
Laboratoire de Recherche Biomatériaux-Tissus Calcifiés
Faculté de Chirurgie Dentaire
Université de Nantes
1, Place Alexis Ricordeau
44042 Nantes
France

Deprez Pascal, PhD
Centre d’Application des Lasers Flandres Artois (CALFA)
Université d’Artois
62400 Béthune
France

Dhert Wouter JA, PhD
Department of Orthopaedics,
University Medical Center
Utrecht
The Netherlands

Dumbleton John, DSci, PhD
512 East Saddle River Road
Ridgewood, NJ 07450
USA

Duthoit Etienne, MD
Polyclinique de Hénin-Beaumont
Route de Courrières
B. P. 199
62256 Hénin Beaumont Cedex
France

Epinette Jean-Alain, MD
Clinique Médico-Chirurgicale
200 rue d’Auvergne
62700 Bruay-Labuissière
France

Ettore Pierre-Paul, MD
Aix-Marseille University
Department of Orthopaedic Surgery
Hôpital Sainte Marguerite
13009 Marseille
France

Fujibayashi Shunsuke, MD, PhD
Department of Orthopaedic Surgery
Kyoto University
Faculty of Medicine
54, Kawara-Machi, Shogoin
Sakyo-ku
Kyoto 606-8507
Japan

Fujita Hiroshi, MD, PhD
H. Oonishi Memorial Joint Replacement Institute
Tominaaga Hospital
4-48, 1 Chome, Minato-Machi, Naniwa-ku
Osaka-Shi, 556-0017
Japan

Gacon Gérard, MD
Centre d’Evaluation André Hermann
Fournitures Hospitalières
ZA de Mulhouse-Heimbrunn
68990 Heimbrunn
France

Geesink Rudolph GT, MD, PhD
University Hospital Maastricht
Dept. of Orthopaedics
Peter Debyelaan 25
6202 AZ Maastricht
The Netherlands

George Marc, FRCS
Guy’s Hospital
St. Thomas Street
London SE1 9RT
England

Giunti Arramdo, MD
Orthopaedic Department of Bologna University
Istituti Ortopedici Rizzoli
Via Pupilli 1
40136 Bologna
Italy

Goalet Christian, MD
Clinique Saint-roch
5 rue Gerhardt
34000 Montpellier
France

Guerra Enrico, MD
1st Orthopaedic Department
Istituti Ortopedici Rizzoli
Via Pupilli 1
40136 Bologna
Italy
Contributors

Habibovic Pamela, B Eng
IsoTis NV
PO Box 98
3720 AB Bithoven
The Netherlands

Hivart Philippe, PhD
Laboratoire d'Automatique et de Mécanique Industrielle et Humaines (LAMIH)
59300 Valenciennes
France

Hussein Rami, FRCS
Department Orthopaedic Surgery
Conquest Hospital
East Sussex
England

Jaffe William L, MD
1095 Park Avenue
New York, NY 10128
USA

Keast-Butler Oliver, MRCS
Department Orthopaedic Surgery
Conquest Hospital
East Sussex
England

Kim Seok Cheol, MD, PhD
H. Oonishi Memorial Joint Replacement Institute
Tominaga Hospital
4-48, 1-Chome, Minato-Machi, Naniwa-Ku,
Osaka-Shi, 556-0017
Japan

Levine Harlan B, MD
NYU-Hospital for Joint Diseases
Resident, Department of Orthopaedic Surgery
301 E. 17th Street, 14th Floor
New York, NY 10003
USA

Leyvraz Pierre-François, MD
Hôpital Orthopédique de la Suisse Romande
Lausanne
Switzerland

Manley Michael T, PhD
12-A Chestnut Street
Ridgewood, NJ 07450
USA

Massin Philippe, MD
Service de Chirurgie Orthopédique
49100 CHU Angers
France

Meijers Will, MD
Department of Orthopaedics and Traumatology
Atrium Medisch Centrum
Postbus 4446
6401 CX Heerlen
The Netherlands

Morris Haydn, FRACS FA OrthA
Suite 80, 8th Floor
166 Gipps Street
East Melbourne 3002
Victoria
Australia

Mueller Marion, FRCS
Royal Sussex County Hospital,
Eastern Road, Brighton,
Sussex BN2 5BE
England

Nakamura Takashi, MD, PhD
Department of Orthopaedic Surgery
Kyoto University
Faculty of Medicine
54, Kawara-Machi, Shogoin
Sakyo-ku
Kyoto 606-8507
Japan

Nourissat Christian, MD
Clinique Ollier
75 rue G. Giraud
42300 Roanne
France

Oonishi Hironobu, MD, PhD
H. Oonishi Memorial Joint Replacement Institute,
Tominaga Hospital,
4-48, 1-Chome, Minato-Machi, Naniwa-Ku,
Osaka-Shi, 556-0017.
Japan

Oosterbos Kees JM, MD
Department of orthopaedics
Atrium Medisch Centrum
PO Box 4446
6401 CX Heerlen
The Netherlands

Overgaard Søren, MD, PhD
Department of Orthopaedic Surgery,
Aarhus University Hospital
Aarhus Amtssygehus
DK-8000 Aarhus C
Denmark

Passuti Norbert, MD
Laboratoire de Recherche Biomatériaux-Tissus Calcifiés
Faculté de Chirurgie Dentaire
Université de Nantes
I, Place Alexis Ricordeau
44042 Nantes
France
<table>
<thead>
<tr>
<th>Contributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter Bastian, DSCI</td>
</tr>
<tr>
<td>Hôpital Orthopédique de la Suisse Romande & Biomedical Engineering Laboratory</td>
</tr>
<tr>
<td>Swiss Federal Institute of Technology</td>
</tr>
<tr>
<td>1015 Lausanne</td>
</tr>
<tr>
<td>Switzerland</td>
</tr>
<tr>
<td>Petit Roland, MD</td>
</tr>
<tr>
<td>Clinique Saint-Sauveur</td>
</tr>
<tr>
<td>1 rue du Bourg</td>
</tr>
<tr>
<td>68100 Mulhouse</td>
</tr>
<tr>
<td>France</td>
</tr>
<tr>
<td>Philippe Michel P., MD</td>
</tr>
<tr>
<td>Clinique Saint Gérard</td>
</tr>
<tr>
<td>Avenue J.H. Fabre</td>
</tr>
<tr>
<td>84200 Carpentras</td>
</tr>
<tr>
<td>France</td>
</tr>
<tr>
<td>Pioletti Dominique P., PhD</td>
</tr>
<tr>
<td>Hôpital Orthopédique de la Suisse Romande & Biomedical Engineering Laboratory</td>
</tr>
<tr>
<td>Swiss Federal Institute of Technology</td>
</tr>
<tr>
<td>1015 Lausanne</td>
</tr>
<tr>
<td>Switzerland</td>
</tr>
<tr>
<td>Rahbek Ole, MD, PhD</td>
</tr>
<tr>
<td>Department of Orthopaedic Surgery, Aarhus University Hospital</td>
</tr>
<tr>
<td>Aarhus Amtssygehus</td>
</tr>
<tr>
<td>DK-8000 Aarhus C</td>
</tr>
<tr>
<td>Denmark</td>
</tr>
<tr>
<td>Rahmy Ali JA, MD</td>
</tr>
<tr>
<td>Department of orthopaedics</td>
</tr>
<tr>
<td>Atrium Medisch Centrum</td>
</tr>
<tr>
<td>PO Box 4446</td>
</tr>
<tr>
<td>6401 CX Heerlen</td>
</tr>
<tr>
<td>The Netherlands</td>
</tr>
<tr>
<td>Rakotomana Lalao R., PhD</td>
</tr>
<tr>
<td>IRMAR</td>
</tr>
<tr>
<td>Université de Rennes 1</td>
</tr>
<tr>
<td>35000 Rennes</td>
</tr>
<tr>
<td>France</td>
</tr>
<tr>
<td>Ray André, MD</td>
</tr>
<tr>
<td>85-87 Boulevard des Belges</td>
</tr>
<tr>
<td>69450 Lyon</td>
</tr>
<tr>
<td>France</td>
</tr>
<tr>
<td>Rubin Pascal, PhD</td>
</tr>
<tr>
<td>Hôpital Orthopédique de la Suisse Romande</td>
</tr>
<tr>
<td>Lausanne</td>
</tr>
<tr>
<td>Switzerland</td>
</tr>
<tr>
<td>Sanchez-Sotelo Joaquin, MD, PhD</td>
</tr>
<tr>
<td>Department of Orthopedic Surgery</td>
</tr>
<tr>
<td>Hospital Universitario La Paz</td>
</tr>
<tr>
<td>Madrid</td>
</tr>
<tr>
<td>Spain</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sutton Kate, MA</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Contributors

Takai Shinro, MD, PhD
Department of Orthopaedic Surgery
Kyoto Prefectural University of Medicine
Kyoto
Japan

Takikawa Satoshi, MD, PhD
Departments of Pathology and Orthopedic Surgery
The Cleveland Clinic Foundation
Cleveland, Ohio, 44195
USA

Thérin Michel, MD
Cogent
69400 Villefranche sur Saône
France

Tillie Bruno, MD
Clinique Bon Secours
9, Place de la Préfecture
62000 Arras
France

Toni Aldo, MD
Orthopaedic Department
Istituti Ortopedici Rizzoli
Via Pupilli 1
40136 Bologna
Italy

Tonino Alfons J, MD, PhD
Department of orthopaedics
Atrium Medisch Centrum
PO Box 4446
6401 CX Heerlen
The Netherlands

Traina Francesco, MD
1st Orthopaedic Department
Istituti Ortopedici Rizzoli
Via Pupilli 1
40136 Bologna
Italy

Tsutsumi Sadami, PhD
Department of Medical Simulation Engineering
Institute for Frontier Medical Science
Kyoto University,
Kyoto,
Japan

Van der Linde Mathijs, MD
Department of Orthopaedies and Traumatology
Atrium Medisch Centrum
Postbus 4446
6401 CX Heerlen
The Netherlands

Vidalain Jean-Pierre, MD
Clinique du Lac
22, rue André Theuriet
74000 Annecy
France

Vogely Charles H, MD, PhD
Department of Orthopaedics
University Medical Center
Utrecht
The Netherlands

Walter William K, MB, BS, FRCS, FRACS
Level 3
100 Bay Road
Waverton
New South Wales
Australia

Witteveer Wendy D
Department of Orthopaedics and Traumatology
Atrium Medisch Centrum
Postbus 4446
6401 CX Heerlen
The Netherlands

Yoshino Nobuyuki MD, PhD
Department of Orthopaedic Surgery
Kyoto Kujo Hospital
Kyoto
Japan

Young David, FRACS FA OrthA
Melbourne Orthopaedic Group
33, The Avenue Windsor
3181 Victoria
Australia
Foreword

Ronald J. Furlong of the United Kingdom performed the first clinical implantation of a hydroxyapatite-coated (HA) hip implant in 1985, about 18 years ago. This was followed in 1986 by other HA clinical implantations conducted by the ARTRO Group in France and Rudolf Geesink in the Netherlands. Following these pioneers, many thousands of HA-coated hip implants of various designs, from various implant manufacturers, have been implanted worldwide, by many surgeons at many institutions. The coating technology has expanded to include the revision setting in the hip, as well as unicompartmental knees, total knees, shoulders, and an assortment of minor joint implants.

In the early 1990s, we were both involved in the compilation of texts summarizing the application and function of hydroxyapatite coatings, together with the findings of favorable bone adaptation and favorable biological response to the material achieved in vivo. These volumes, Hydroxyapatite Coatings in Orthopaedic Surgery, Rudolph G.T. Geesink and Michael T. Manley eds. Raven Press Ltd 1993, together with Hydroxyapatite Coated Hip and Knee Arthroplasty, Jean-Alain Epinette and Rudolph G.T. Geesink eds. the French Orthopaedic Society 1995, included the early clinical results with hydroxyapatite-coated hip implants that were the results available at the time of writing. Since the publication of these volumes, many reports of clinical results with HA-coated hip implants and HA-coated knee implants have appeared in the orthopaedic literature. Clinical follow-up of about fifteen years is available now in the hip, and ten years follow-up is available in the knee. With host response data of fifteen years now available, we felt that the time was right to ask various investigators worldwide to report the current clinical results with their HA-coated implants of choice, and then to collect these manuscripts into a single volume. We trust that this compilation of results will answer the question of whether the favorable results achieved in the short term with this method of biologic fixation of total joint implants has withstood the test of time.

Our thanks are due to the authors of chapters in this volume for the effort they made to write and submit their work to us in a timely fashion. These authors, working in Europe, the United States, Japan, and Australia, do not all use English as their first language. Many made great efforts to provide us with English language documents. Where we felt the language was unclear, we made only those minor changes needed to facilitate understanding. For manuscripts submitted in a language other than English, we employed professional interpretation, and then made editorial changes if the content was unclear to us. We trust our editorial efforts have not changed the intent of the authors. In addition, each member of our Scientific Committee used their expertise to give further feedback to us. We wish to congratulate and thank each of them for this effort on our behalf. We also wish to thank Kate Sutton, MA, for her many hours of work in editing the copy of our volume. Without her help, we would never have finished this task.

Finally, we should state that results with implants manufactured by many companies are included in this volume. Our intent was simply to determine if the use of hydroxyapatite coatings for the fixation of orthopaedic implants to bone, so fascinating to us in the late 1980s, has been proven by the survivorship and satisfaction of those patients receiving hip and knee implants of the various designs described herein. We trust this monograph will be of value to researchers and to orthopaedic surgeons interested in joint replacement, and will allow them to form their own educated opinion about the utility of hydroxyapatite coatings for implant fixation.

Jean-Alain Epinette, MD
Michael T. Manley, PhD

By the authors' request, all royalties will be given to "Médecins Sans Frontières-Doctors Without Borders".
Preface

Total hip arthroplasty has been with us now for more than forty years. Since the pioneering years of Sir John Charnley, significant improvements have been achieved through better understanding of the inter-relationship between biomaterials, biomechanics, and biology. For example, structural improvements in the cement mantle were derived as cementing technique evolved from first generation to third generation methods. Modern cemented total hip arthroplasty now gives us excellent clinical results and long term implant survival, especially in elderly people. For younger patients, improvement in implant longevity was more difficult to achieve. Demands from ever younger and more active patients tended to exceed the limited mechanical properties and lifetime of acrylic bone cement. This limitation stimulated the development of alternative cementless techniques of implant fixation.

The first generation of cementless fixation included plain press-fit type implants. Without sufficient biological anchoring in bone to counteract the load-bearing forces imposed by patient activity, micro-motion between implant and bone caused bone resorption which contributed to complete implant loosening. However important the geometrical design of the implant may be for the initial mechanical stability of the implant in the bone, some type of stable implant-bone interface was necessary to prevent implant-bone micro-motion.

Fixation by bone ingrowth into porous-metal coatings was a development of the 1980s. Theoretical and experimental foundations were very promising. Pioneering work by Pilliar and Engh in the United States as well as Boutin, Judet and Lord in Europe contributed much to the development of cementless implants. These authors reported successful applications in many patient populations, but emphasized the need for accurate instrumentation and surgical technique. Generally, clinical results using porous-metal coatings were however rather variable and sometimes disappointing because of bead shedding, thigh-pain and unacceptable loosening rates. The causes of loosening were to be found in the inadequate biological profile of the materials involved, although this has improved considerably in the last decade. Bone ingrowth using porous-metal coatings takes a long time period for implant stabilization. Accuracy of bone preparation and immobilization of the implant in the bone during the ingrowth period was critical to success. Improved biological surface characteristics were needed to overcome these problems.

About twenty years ago, the interesting biological profile of calcium-phosphate ceramics and its potential for implant fixation became evident, at first in dental implants, later on in orthopaedics. Through the pioneering work of Klaas de Groot of the Leiden Biomaterials Research Group, the hydroxyapatite coating technique was adapted for orthopaedic applications. Experimental studies were conducted by the author proving the excellent capability of calcium-phosphate coatings to provide a stable bony interface even under less than optimal conditions. Within the large group of calcium-phosphate materials, hydroxyapatite was and still is the most attractive choice because of its natural occurrence in bone, its well-documented biocompatibility and its reliability in establishing a stable bony interface in vivo. First human applications of HA-coatings in orthopaedics were reported both by Furlong and by me in 1986. Since 1987 I have enjoyed a close collaboration with Jean-Alain Epinette, one of the pioneers of HA-coatings in France. Other study teams originated in France, such as the ARTRO and ABG groups, also made significant contributions to the use of HA-coatings in orthopaedic surgery as did Michael Manley in the US. Current follow-up data suggest that HA-coatings can indeed retain reliable long term implant stability and function. The clinical results remain excellent up to current 15 year follow-up and pain rates remain very low.

Over the past two decades, numerous studies have provided an almost exponential increase in knowledge on HA-coatings in orthopaedics. This book is a welcome summary of the work so far. Some controversies still remain. Should coatings be easily resorbable or more permanent, should they be thick or thin, single phase or multiphase calcium phosphates? Today we know that HA-coatings will be transformed by osteoclastic activity and actively take part in the bone remodelling process of the bone around the implant. We know that thin (50-60 micron) HA coatings are very gradually degraded over a long period of time and the body can easily cope with the physiolo-
gical material released without any tissue overload by debris and risk of osteolysis. We know that thicker coatings may suffer mechanical delamination from the implant in a short time period. We do not know if the clearance mechanisms are able to remove this debris or whether (as animal data suggests) the debris simply becomes encapsulated by bone. Some of these answers only may become apparent after many years of clinical follow-up with proper documentation of results. We know now that with the thin HA coatings, clinical results, bone adaptation and implant survivorship remain excellent at twelve to fifteen year follow-up. Only time can tell us whether this favorable trend will continue into longer term (twenty plus years) results. May this book provide a moment of contemplation on current knowledge before we continue our journey to further perfection of artificial joint reconstructions.

Rudolph GT Geesink MD, PhD
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>XI</td>
</tr>
<tr>
<td>Preface</td>
<td>XII</td>
</tr>
</tbody>
</table>

I – Introduction

1. The Early Biological History of Calcium Phosphates
 J. Shepperd, FRCS
 3

2. Calcium Phosphates: A Survey of the Orthopaedic Literature
 M.T. Manley, PhD, K. Sutton, MA and J. Dumbleton, DSc, PhD
 9

II – Basic Science: Histology & Experimental Works

1. Hydroxyapatite: From Plasma Spray to Electrochemical Deposition
 P. Serekian, MS
 29

2. Calcium Phosphate Coatings for Implant Fixation
 O. Rahbek, MD, PhD, S. Overgaard, MD, PhD and K. Søballe, MD, PhD
 35

3. Biological Activities of Biomimetic Calcium Phosphate Coatings
 F. Barrère, PhD, P. Habibovic, B Eng and K. De Groot, PhD
 53

4. Histology and Fate of Bioactive Coatings
 T.W. Bauer, MD, PhD and S. Takikawa, MD, PhD
 67

5. What is the Function and Fate of the HA Coating in Cementless Hydroxyapatite-coated Hip Prostheses?
 A.J. Tonino, MD, PhD, K.JM. Oosterbos, MD, A. Rahmy, MD and M. Thérin, MD
 75

6. Biomimetic Hydroxyapatite Coatings
 P. Habibovic, B. Eng, F. Barrère, PhD and K. De Groot, PhD
 87

7. Combination of HA and Biphosphonate Coating to Control the Bone Remodeling Around the Orthopaedic Implant
 D.P. Pioletti, PhD, B. Peter, BSc, L.R. Rakotomanana, PhD, P. Rubin, PhD and P.F. Leyvraz, MD
 97

8. Coating of Titanium with Hydroxyapatite by Laser Surface Powder Cladding: Exploratory Results
 P. Deprez, PhD and Ph. Hivart, PhD
 103

9. Finite Element Analysis in Bioactive-coated Tibial Components
 N. Yoshino, MD, PhD, S. Takai, MD, PhD and S. Tsutsumi, PhD
 107

III – Bioactive Coatings: Clinical Works

1. Current Status of Bioactive Coatings in Japan
 S. Fujibayashi, MD, PhD and T. Nakamura, MD, PhD
 115

2. Radiological Assessment and Predictive Meaning of Bone Remodeling in Cementless Implants
 Ph. Massin, MD and JA. Epinette, MD
 125
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. The Extent of Hydroxyapatite Coating: Proximal versus Full Coating with Customs Stems Using Compacted Bone Preparation</td>
<td>139</td>
</tr>
<tr>
<td>J.N. Argenson, MD, P.P. Ettore, MD and J.M. Aubaniac, MD</td>
<td></td>
</tr>
<tr>
<td>4. The Effect of the Metal Substrate on Biologic Fixation with Hydroxyapatite</td>
<td>147</td>
</tr>
<tr>
<td>W. L. Jaffe, MD and H. Levine, MD</td>
<td></td>
</tr>
<tr>
<td>5. Proximal Modularity in a Cementless Hydroxyapatite-Coated Hip Replacement. Assessment of Utility</td>
<td>163</td>
</tr>
<tr>
<td>M.P. Philippe, MD, G. Gacon, MD, A. Ray, MD and A. Dambreville, MD</td>
<td></td>
</tr>
<tr>
<td>6. Early Clinical Results of an Arc-Deposited Hydroxyapatite-Coated Acetabular Component in Total Hip Arthroplasty</td>
<td>171</td>
</tr>
<tr>
<td>S.W. Siverhus, MD and D.R. Bryant, CFA</td>
<td></td>
</tr>
<tr>
<td>7. Hydroxyapatite-Coated Ti6Al4V Implants and Peri-implant Infection</td>
<td>177</td>
</tr>
<tr>
<td>K.J.M. Oosterbos, MD, C. Vogely, MD, PhD, W.J.A. Dhert, PhD and A.J. Tonino, MD, PhD</td>
<td></td>
</tr>
<tr>
<td>8. Hydroxyapatite and Infection, Results of a Consecutive Series of 49 Infected Total Hip Replacements</td>
<td>191</td>
</tr>
<tr>
<td>J.P. Vidalain, MD and the ARTRO Group</td>
<td></td>
</tr>
<tr>
<td>9. The 13 Year Experience of Novel Cementing Technique Using Hydroxyapatite Granules: Interface Bioactive Bone Cement (IBBC)</td>
<td>197</td>
</tr>
<tr>
<td>H. Oonishi, MD, PhD, Seok Cheol Kim, MD, PhD and H. Fujita, MD</td>
<td></td>
</tr>
</tbody>
</table>

IV – Clinical Experiences in Primary Hips at a Minimum of 10 Years

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Two Decades of Hydroxyapatite Coatings in Total Hip Replacement</td>
<td>211</td>
</tr>
<tr>
<td>M. George, FRCS, M. Mueller, FRCS and J. Shepperd, FRCS</td>
<td></td>
</tr>
<tr>
<td>2. Corail Stem Long-Term Results based upon the 15-Year Artro Group Experience</td>
<td>217</td>
</tr>
<tr>
<td>J.P. Vidalain, MD</td>
<td></td>
</tr>
<tr>
<td>3. Long-term Survivorship Analysis of Hydroxyapatite-Coated Hips</td>
<td>225</td>
</tr>
<tr>
<td>J.A. Epinette, MD and M.T. Manley, PhD</td>
<td></td>
</tr>
<tr>
<td>4. Hydroxyapatite Femoral Stems for Total Hip Arthroplasty: 10-14 Year Follow-up</td>
<td>235</td>
</tr>
<tr>
<td>J.A. D’Antonio, MD, W.N. Capello, MD, M.T. Manley, PhD, R.G.T. Geesink, MD, PhD and W.L. Jaffe, MD</td>
<td></td>
</tr>
<tr>
<td>5. Clinical Experience with the ABG Total Hip Arthroplasty</td>
<td>243</td>
</tr>
<tr>
<td>Ch. Nourissat, MD and the ABG Group (J. Adrey, MD, D. Berteaux, MD, C. Goalard, MD)</td>
<td></td>
</tr>
<tr>
<td>6. The ABG Hydroxyapatite-coated Hip Prosthesis followed up for 9-11 years</td>
<td>251</td>
</tr>
<tr>
<td>A.J. Tonino, MD, PhD, K.J.M. Oosterbos, MD, A.I.A. Rahmy, MD and W. D. Witpeerd</td>
<td></td>
</tr>
<tr>
<td>7. Ten-years Follow-up Experience with an Hydroxyapatite-coated Hip Arthroplasty</td>
<td>261</td>
</tr>
<tr>
<td>A.Toni, MD, F. Traina, MD, S. Stea, DSc, B. Bordini, DSc, E. Guerra, MD, A. Sudanese, MD and A. Giunti, MD</td>
<td></td>
</tr>
<tr>
<td>8. The Symbios HA Custom Stem at 10 Years</td>
<td>269</td>
</tr>
<tr>
<td>J.N. Argenson, MD and J.M. Aubaniac, MD</td>
<td></td>
</tr>
<tr>
<td>9. Clinical Results with the Omniflex HA Femoral Stem</td>
<td>279</td>
</tr>
<tr>
<td>J. Sanchez-Sotelo, MD, PhD and M.E. Cabanela, MD</td>
<td></td>
</tr>
<tr>
<td>10. Radiographic Analysis of HA-coated Hip Femoral Components at 10-15 Years of Follow-up..</td>
<td>285</td>
</tr>
<tr>
<td>J.A. Epinette, MD, M.T. Manley, PhD and Ph. Massin, MD</td>
<td></td>
</tr>
<tr>
<td>11. Ten-Year Results of the PRA Stem</td>
<td>301</td>
</tr>
<tr>
<td>R. Petit, MD</td>
<td></td>
</tr>
</tbody>
</table>
12. Long-term Results with the HA-coated Arc 2f Cup in Primary Hip Surgery 313
 J.A. Epinette, MD, M.T. Manley, PhD and E. Duthoit, MD
13. Minimum Ten-Year Plus Follow-up of the HA-coated Atlas Cup... 325
 A. Dambreville, MD

V – Hydroxyapatite in Hip Revision Surgery

1. Experimental Data Regarding Macroporous Biphasic-Calcium Phosphate Ceramics: Can they replace bone grafting? ... 331
 N. Passuti, MD, J. Delécrin, PhD and G. Daculsi, PhD
2. Hydroxyapatite Granules in Acetabular Reconstruction ... 339
 H. Oonishi, MD, PhD and H. Fujita, MD, PhD
3. The Use of the OP-1 Implant in Reconstructive Surgery of the Hip and Knee 349
 S.D. Cook, PhD and R. L. Barrack, MD
4. Management of Severe Acetabular Defects Using a Hydroxyapatite-Coated Reconstruction Ring. 357
 B. Balay, MD and The Artro Group
5. The Use of the Hydroxyapatite-Coated Arc2f Cup in Acetabular Revision Surgery 365
 J.A. Epinette, MD, M.T. Manley, PhD and B. Tillie, MD
6. Acetabular Revision Using Cementless Hydroxyapatite-coated Components 377
 A.J. Tonino, MD, PhD, M. van der Linde, MD, W. Meijers, MD and J. Schaafsma, MD
7. Femoral Component Revision with Hydroxyapatite-Coated Revision Stems 385
 J.C. Chatelet, MD and L. Setiey, MD

VI – Clinical Experience with Hydroxyapatite Knee Implants at a minimum of 10 years

1. Twelve-year Experience with Hydroxyapatite in Primary Knee Arthroplasty 399
 J.A. Epinette, MD and M.T. Manley, PhD
2. Results and Perspectives at Ten-year Follow-up of a Hydroxyapatite-coated Total Knee Replacement ... 411
 O. Keast-Butler, FRCS, R. Hussein, FRCS and J. Shepperd., FRCS
3. Hydroxyapatite-coated Unix unicompartmental Knee Arthroplasty ... 417
 J.A. Epinette, MD, D. Young, FRACS, FA, OrthA and H. Morris, FRACS, FA, OrthA
4. The Use of Hydroxyapatite in Unicompartmental Arthroplasty : A Brief Note.......................... 431
 Ph. Cartier, MD

VII – Clinical Overview, Outcomes, and Perspectives in Bioactive Coatings

1. Global Overview : Fifteen Years of Clinical Experience with Hydroxyapatite Coatings in Joint Arthroplasty ... 437
2. The "Frequently Asked Questions" about Hydroxyapatite Coatings .. 447
 T.W. Bauer, MD, PhD, J.A. D’Antonio, MD, H. Oonishi, MD, PhD, A. Toni, MD, A.J. Tonino, MD, PhD, W.K. Walter, MB, BS, FRCS, FRACS, William N. Capello, MD and P. Serekian, MS
3. Afterwords: "Hydroxyapatite Coatings: The First Fifteen Years" .. 451
 J.A. Epinette, MD and M.T. Manley, MD, PhD