Chapter 5
Inheritance in Multivariate Subordination

We now study inheritance of L_m property or strict stability from subordinator to subordinated in multivariate subordination. In order to observe this inheritance, we have to assume strict stability of the distribution at each $s \in K$ of a K-parameter subordinand $\{X_s : s \in K\}$. Section 5.1 gives results and examples. Section 5.2 discusses some generalization where the defining condition of selfdecomposability or stability for distributions on \mathbb{R}^d involves a $d \times d$ matrix Q. This is called operator generalization.

5.1 Inheritance of L_m Property and Strict Stability

We begin with the following theorem and examples in the usual subordination.

Theorem 5.1 Suppose that $\{X_t : t \geq 0\}$ is a strictly α-stable process on \mathbb{R}^d, $\{Z_t : t \geq 0\}$ is a subordinator, and they are independent. Let $\{Y_t : t \geq 0\}$ be a Lévy process on \mathbb{R}^d constructed from $\{X_t\}$ by subordination by $\{Z_t\}$.

(i) If $\{Z_t\}$ is selfdecomposable, then $\{Y_t\}$ is selfdecomposable.
(ii) More generally, let $m \in \{0, 1, \ldots, \infty\}$. If $\{Z_t\}$ is of class $L_m(\mathbb{R})$, then $\{Y_t\}$ is of class $L_m(\mathbb{R}^d)$.
(iii) If $\{Z_t\}$ is strictly β-stable, then $\{Y_t\}$ is strictly $\alpha\beta$-stable.

Halgreen [30] (1979) and Ismail and Kelker [36] (1979) proved part of these results. Proof of Theorem 5.1 will be given as a special case of Theorem 5.9.

Example 5.2 Let $0 < \alpha < 1$. Let $\{Y_t\}$ be the Lévy process on \mathbb{R} subordinate to a strictly α-stable increasing process $\{X_t\}$ on \mathbb{R} with $Ee^{-uX_t} = e^{-tu^\alpha}$, $u \geq 0$, by a Γ-process $\{Z_t\}$ with $EZ_1 = 1$. Then

$$P[Y_1 \leq x] = 1 - E_\alpha(-x^\alpha), \quad x \geq 0,$$

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019
where $E_\alpha(x)$ is the Mittag–Leffler function $E_\alpha(x) = \sum_{n=0}^{\infty} x^n / \Gamma(n\alpha + 1)$, and

$$P[Y_t \leq x] = \sum_{n=0}^{\infty} \frac{(-1)^n \Gamma(t+n)}{n! \Gamma(t) \Gamma(1+\alpha(t+n))} x^{\alpha(t+n)}, \quad x \geq 0.$$

By Theorem 5.1, $\mathcal{L}(Y_t)$ is selfdecomposable. See Pillai [79] (1990) or Sato [93, E 34.4] (1999).

Example 5.3 Let $0 < \alpha \leq 2$. Let $\{Y_t\}$ be the Lévy process subordinate to a symmetric α-stable process $\{X_t\}$ on \mathbb{R} with $E e^{izX_t} = e^{-t|z|^{\alpha}}$ by a Γ-process $\{Z_t\}$ with $EZ_1 = 1/q$, $q > 0$. Then

$$E e^{izY_t} = (1 + q^{-1}|z|^{\alpha})^{-t}, \quad z \in \mathbb{R},$$

where $\mathcal{L}(Y_1)$ is Linnik distribution or geometric stable distribution (Example 4.7). Theorem 5.1 shows that $\mathcal{L}(Y_t)$ is selfdecomposable.

In the definitions and examples below, we use $\gamma, \delta, \lambda, \chi, \psi$ for parameters of some special distributions, keeping a customary usage.

Definition 5.4 The distribution

$$\mu_{\gamma,\delta}(dx) = (2\pi)^{-1/2} \delta e^{\gamma \delta} x^{-3/2} e^{-(\delta^2 x^{-1} + \gamma^2 x)/2} 1_{(0,\infty)}(x) dx$$

with parameters $\gamma > 0, \delta > 0$ is called inverse Gaussian distribution.

The Laplace transform $L_{\mu_{\gamma,\delta}}(u), u \geq 0$, of $\mu_{\gamma,\delta}$ is

$$L_{\mu_{\gamma,\delta}}(u) = \int_{(0,\infty)} e^{-ux} \mu_{\gamma,\delta}(dx) = \exp \left[-\delta \left(\sqrt{2u + \gamma^2} - \gamma \right) \right]$$

$$= \exp \left[2^{-1} \pi^{-1/2} \delta \int_{0}^{\infty} (e^{-(2u+\gamma^2)x} - 1) x^{-3/2} dx + \gamma \delta \right]$$

$$= \exp \left[2^{-1} \pi^{-1/2} \delta \int_{0}^{\infty} (e^{-2ux} - 1) x^{-3/2} e^{-\gamma^2 x} dx \right]$$

$$= \exp \left[(2\pi)^{-1/2} \delta \int_{0}^{\infty} (e^{-ux} - 1) x^{-3/2} e^{-\gamma^2 x/2} dx \right].$$

The last formula shows that $\mu_{\gamma,\delta}$ is infinitely divisible with Lévy measure density

$$(2\pi)^{-1/2} \delta x^{-3/2} e^{-\gamma^2 x/2}$$

on $(0, \infty)$. Hence $\mu_{\gamma,\delta}$ is selfdecomposable by Theorem 1.34.

For every $\lambda \in \mathbb{R}$ we denote by K_λ the modified Bessel function of order λ given by (4.9), (4.10) of [93, p. 21].
Example 5.5 Let \(\{ Z_t \} \) be a subordinator with \(\mathcal{L}(Z_1) = \mu_{\gamma, \delta} \). Then \(\mathcal{L}(Z_t) = \mu_{\gamma, t\delta} \). Let \(\{ Y_t \} \) be the Lévy process subordinate to Brownian motion \(\{ X_t \} \) on \(\mathbb{R} \) by \(\{ Z_t \} \). Then

\[
\mathbb{P}[Y_t \in B] = \int_0^\infty \mu_{\gamma, t\delta}(ds) \int_B (2\pi s)^{-1/2} e^{-x^2/(2s)} dx
\]

\[
= (2\pi)^{-1} \delta e^{t\gamma \delta} \int_B dx \int_0^\infty s^{-2} e^{-(x^2+t^2\delta^2)/(2s)-(\gamma^2 s/2)} ds
\]

\[
= (4\pi)^{-1} \delta e^{t\gamma \delta} \int_B dx \int_0^\infty u^{-2} e^{-(\gamma^2 (x^2+t^2\delta^2)/(4u)) - u} du
\]

\[
= \int_B \frac{\gamma e^{t\gamma \delta}}{\pi \sqrt{1 + (x/(t\gamma))^2}} K_1 \left(t\gamma \delta \sqrt{1 + (x/(t\gamma))^2} \right) dx,
\]

where \(K_1 \) is the modified Bessel function of order 1. This shows that \(\mathcal{L}(Y_t) \) is a special case of the \emph{normal inverse Gaussian distribution} defined by Barndorff-Nielsen [5] (1997). By Theorem 5.1, it is selfdecomposable. By Theorem 4.3 its characteristic function is

\[
E e^{iz Y_t} = e^{t\Psi(-z^2/2)} = \exp \left[-t\delta \left(\sqrt{z^2 + \gamma^2} - \gamma \right) \right]
\]

with \(\Psi(w) = -\delta \left(\sqrt{-2w + \gamma^2} - \gamma \right) \).

Definition 5.6 The distribution

\[
\mu_{\lambda, \chi, \psi}(dx) = c x^{\lambda-1} e^{-(\chi x^{-1} + \psi x)/2} 1_{(0,\infty)}(x) dx
\]

is called \emph{generalized inverse Gaussian distribution} with parameters \(\lambda, \chi, \psi \). Here \(c \) is a normalizing constant. The domain of the parameters is given by \(\{ \lambda < 0, \chi > 0, \psi \geq 0 \}, \{ \lambda = 0, \chi > 0, \psi > 0 \}, \) and \(\{ \lambda > 0, \chi \geq 0, \psi > 0 \} \).

The Laplace transform \(L_{\mu_{\lambda, \chi, \psi}}(u), u \geq 0, \) of \(\mu_{\lambda, \chi, \psi} \) is

\[
L_{\mu_{\lambda, \chi, \psi}}(u) = \begin{cases} \left(\frac{\psi}{\psi + 2u} \right)^{\lambda/2} K_\lambda \left(\sqrt{\chi (\psi + 2u)} \right) K_\lambda \left(\sqrt{\chi \psi} \right) & \text{if } \lambda > 0 \text{ and } \psi > 0 \\ \frac{2^{1+\lambda/2} K_\lambda \left(\sqrt{2\chi u} \right)}{\Gamma(-\lambda)(\chi u)^{\lambda/2}} & \text{if } \lambda < 0, \chi > 0, \text{ and } \psi = 0, \end{cases}
\]

where \(K_\lambda \) is the modified Bessel function of order \(\lambda \). It is known that \(\mu_{\lambda, \chi, \psi} \) is infinitely divisible and, moreover, selfdecomposable [93, E. 34.13]. It belongs to the smaller class \(GGC \) called \emph{generalized \(\Gamma \)-convolutions}, which means that it is
the limit of a sequence of convolutions of Γ-distributions. See Halgreen [30] (1979). Concerning this class, see Notes at end of Chap. 2.

In order to extend Theorem 5.1 to multivariate subordination, we prepare two lemmas.

Lemma 5.7 Let K be a cone in \mathbb{R}^N and $\{X_s : s \in K\}$ a K-parameter Lévy process on \mathbb{R}^d. Let $0 < \alpha \leq 2$. Then $\mathcal{L}(X_s) \in \mathcal{G}_\alpha^0$ if and only if $X_{ts} \overset{d}{=} t^{1/\alpha} X_s$ for every $t > 0$.

Proof Let $\mu_s = \mathcal{L}(X_s)$. The meaning of $\mu_s \in \mathcal{G}_\alpha^0$ is that $\mu_s \in ID$ and $\hat{\mu}_s(z) = \hat{\mu}_s(t^{1/\alpha} z)$ for $t > 0$. See Definition 1.23 and Proposition 1.22. Since, by Lemma 4.21, $\{X_s : t \geq 0\}$ is a Lévy process, $\hat{\mu}_{ts}(z) = \hat{\mu}_s(z)^t$. Hence the condition is written as $X_{ts} \overset{d}{=} t^{1/\alpha} X_s$. \hfill \blacksquare

Lemma 5.8 Let $\{Z_t\}$ be a K-valued subordinator such that $\mathcal{L}(Z_t) \in L_0(\mathbb{R}^N)$ for $t \geq 0$. Let $\Psi(w)$ be the function in (4.11). For $b > 1$ define $\Psi_b(w)$ as

$$
\Psi(w) = \Psi(b^{-1}w) + \Psi_b(w).
$$

(5.1)

Then $e^{i\Psi_b(iz)}$, $z \in \mathbb{R}^N$, is the characteristic function of a K-valued subordinator $\{Z_t^{(b)}\}$. Let $m \geq 1$. Then $\mathcal{L}(Z_t) \in L_m$ for $t \geq 0$ if and only if $\mathcal{L}(Z_t^{(b)}) \in L_{m-1}$ for $t \geq 0$ and $b > 1$.

Proof Let $\mu = \mathcal{L}(Z_1)$ with generating triplet (A, ν, γ). Its characteristic function is

$$
\hat{\mu}(z) = e^{i\Psi(iz)}, z \in \mathbb{R}^N.
$$

If $b > 1$, then by selfdecomposability there is a distribution ρ_b such that

$$
\hat{\mu}(z) = \hat{\mu}(b^{-1}z) \hat{\rho}_b(z).
$$

Let μ_b be such that $\hat{\rho}_b(z) = \hat{\mu}(b^{-1}z)$. Then $\mu = \mu_b \ast \rho_b$ and, by Proposition 1.13, μ_b and ρ_b are in ID. Let $(\tilde{A}_b, \tilde{\nu}_b, \tilde{\gamma}_b)$ and (A_b, ν_b, γ_b) be the generating triplets of μ_b and ρ_b, respectively. Then $A = \tilde{A}_b + A_b$, $\nu = \tilde{\nu}_b + \nu_b$, and $\gamma = \tilde{\gamma}_b + \gamma_b$. Hence $\nu_b \leq \nu$. By Theorem 4.11, $A = 0$, $\nu(\mathbb{R}^N \setminus K) = 0$, $\int_{|s| \leq 1} |s| \nu(ds) < \infty$, and $\gamma^0 \in K$. Therefore $\nu_b(\mathbb{R}^N \setminus K) = 0$, and $\int_{|s| \leq 1} |s| \nu_b(ds) < \infty$. Also $A_b = 0$, as $0 \leq \langle z, A_b z \rangle \leq \langle z, A z \rangle = 0$. Further, their drifts are related as $\gamma^0 = \tilde{\gamma}_b^0 + \gamma_b^0$ and $\tilde{\gamma}_b^0 = b^{-1} \gamma^0$. Thus $\gamma_b^0 = (1 - b^{-1})^{-1} \gamma^0 \in K$. Then, by Theorem 4.11, a Lévy process $\{Z_t^{(b)}\}$ with $\mathcal{L}(Z_t^{(b)}) = \rho_b$ is a K-valued subordinator. Its characteristic function equals $(\hat{\rho}_b(z)^{-1})^{-1} = e^{i\Psi_b(iz)}$. Finally, $\mathcal{L}(Z_t)$ is of class L_m if and only if, for each $b > 1$, $\rho_b \in L_{m-1}$, that is, $\mathcal{L}(Z_t^{(b)})$ is of class L_{m-1}. \hfill \blacksquare

Theorem 5.9 Let K be a cone in \mathbb{R}^N and $0 < \alpha \leq 2$. Let $\{Z_t : t \geq 0\}$ be a K-valued subordinator and $\{X_s : s \in K\}$ a K-parameter Lévy process on \mathbb{R}^d such that $\mathcal{L}(X_s) \in \mathcal{G}_\alpha^0$ for all $s \in K$. Assume that they are independent. Let $\{Y_t : t \geq 0\}$ be the Lévy process on \mathbb{R}^d constructed from $\{X_t\}$ and $\{Z_t\}$ by multivariate subordination of Definition 4.24.
5.1 Inheritance of L_m Property and Strict Stability

(i) If $\{Z_t\}$ is selfdecomposable, then $\{Y_t\}$ is selfdecomposable.

(ii) Let $m \in \{0, 1, \ldots, \infty\}$. If $\{Z_t\}$ is of class $L_m(\mathbb{R}^d)$, then $\{Y_t\}$ is of class $L_m(\mathbb{R}^d)$.

(iii) Let $0 < \beta \leq 1$. If $\mathcal{L}(Z_t) \in \mathcal{S}_\beta^0$ for all $t \geq 0$, then $\mathcal{L}(Y_t) \in \mathcal{S}_{\alpha\beta}^0$ for all $t \geq 0$.

Proof Let $\mu_s = \mathcal{L}(X_s)$.

(i) Let $\{Z_t\}$ be selfdecomposable. Then $\mathcal{L}(Z_t) \in L_0$ for all $t \geq 0$. Using Lemma 5.8 and its notation, we have

$$Z_t \overset{d}{=} b^{-1}Z_t + Z_t^{(b)},$$

where $b^{-1}Z_t$ and $Z_t^{(b)}$ are independent. Then,

$$E e^{i(z, Y_t)} = E e^{i(b^{-1}\alpha z, Y_t)} E \left[\hat{\mu}_{Z_t^{(b)}}(z) \right]. \quad (5.2)$$

Indeed we have, using Lemma 4.21 (i) and Lemma 5.7,

$$E e^{i(z, Y_t)} = E \left[\left(E e^{i(z, X_s)} \right)_{s=Z_t} \right] = E \left[\hat{\mu}_{Z_t}(z) \right] = E \left[\hat{\mu}_{b^{-1}Z_t + Z_t^{(b)}}(z) \right]$$

$$= E \left[\hat{\mu}_{Z_t}(z) \right] = E \left[\hat{\mu}_{b^{-1}Z_t}(z) E \left[\hat{\mu}_{Z_t^{(b)}}(z) \right] \right]$$

which is the right-hand side of (5.2). Notice that $b^{1/\alpha}$ can be an arbitrary real bigger than 1 and $E \left[\hat{\mu}_{Z_t^{(b)}}(z) \right]$ is the characteristic function of a subordinated process by Lemma 5.8. This shows that $\{Y_t\}$ is selfdecomposable.

(ii) By induction. If $m = 0$, then the assertion is true by (i). Suppose that the assertion is true for $m - 1$ in place of m. Let $\{Z_t\}$ be of class L_m, that is, $\mathcal{L}(Z_t) \in L_m$ for $t \geq 0$. Then $\{Z_t^{(b)}\}$ is a K-valued subordinator of class L_m by Lemma 5.8. Hence $E \left[\hat{\mu}_{Z_t^{(b)}}(z) \right]$ is a characteristic function of class L_{m-1}. Thus $\mathcal{L}(Y_t) \in L_m$.

(iii) Let $\mathcal{L}(Z_t) \in \mathcal{S}_\beta^0$ for $t \geq 0$. Then $Z_{at} \overset{d}{=} a^{1/\beta}Z_t$. Therefore, using Lemma 5.7,

$$E e^{i(z, Y_{at})} = E \left[\left(E e^{i(z, X_s)} \right)_{s=Z_{at}} \right] = E \left[\left(E e^{i(z, X_s)} \right)_{s=a^{1/\beta}Z_t} \right]$$

$$= E \left[\hat{\mu}_{a^{1/\beta}Z_t}(z) \right] = E \left[\hat{\mu}_{Z_t}(a^{1/(\alpha\beta)}z) \right] = E \left[e^{i(z, a^{1/(\alpha\beta)}Y_t)} \right].$$

Thus $Y_{at} \overset{d}{=} a^{1/(\alpha\beta)}Y_t$ for any $a > 0$. ■
When $d = 1$, Theorem 5.1 can be generalized to the case where $\{X_t : t \geq 0\}$ is Brownian motion with non-zero drift on \mathbb{R}. This is 2-stable, but not strictly 2-stable. So the assumption in Theorem 5.1 is not satisfied. Nevertheless, selfdecomposability is inherited as follows.

Theorem 5.10 Let $\{X_t : t \geq 0\}$ be Brownian motion with drift γ on \mathbb{R}. That is,
\[
E e^{izX_t} = e^{t(-z^2/2+i\gamma z)}, \quad z \in \mathbb{R}.
\]

Let $\{Y_t\}$ be a Lévy process subordinate to $\{X_t\}$ by $\{Z_t\}$. If $\{Z_t\}$ is selfdecomposable, then $\{Y_t\}$ is selfdecomposable.

Remark 5.11 There arises the question whether Theorem 5.10 can be extended to the case where $\{X_t\}$ is an α-stable, not strictly α-stable process with $0 < \alpha < 2$ on \mathbb{R}. Ramachandran’s paper [80] (1997) contains an answer to this question. Namely, if $1 < \alpha < 2$, then there are an α-stable, not strictly α-stable process $\{X_t\}$ on \mathbb{R} and a selfdecomposable subordinator $\{Z_t\}$ such that the Lévy process $\{Y_t\}$ subordinate to $\{X_t\}$ by $\{Z_t\}$ is not selfdecomposable. Specifically, Ramachandran shows that if $E e^{izX_t} = e^{t(-c|z|^{\alpha}+i\gamma z)}$ with $1 < \alpha < 2$, $c > 0$, and $\gamma \neq 0$ and $\{Z_t\}$ is Γ-process with parameter $\lambda > 0$ (a special case of Example 4.7), then $\{Y_t\}$ is not selfdecomposable. The question in the case $0 < \alpha \leq 1$ is still open in the authors’ knowledge.

Remark 5.12 If $d \geq 2$, then the situation is quite different and Theorem 5.10 cannot be generalized. It is known that, for $d \geq 2$, a Lévy process $\{Y_t\}$ on \mathbb{R}^d subordinate to Brownian motion with drift, $\{X_t\}$, by a selfdecomposable subordinator $\{Z_t\}$ is not necessarily selfdecomposable. Even if $\mathcal{L}(Z_1)$ is a generalized Γ-convolution, $\{Y_t\}$ is not necessarily selfdecomposable.

Definition 5.13 The distribution
\[
\mu(dx) = c \exp \left(-a\sqrt{1+x^2}+bx\right) dx
\]
on \mathbb{R} with parameters a, b satisfying $a > 0$ and $|b| < a$ or a scale change of this distribution is called *hyperbolic distribution*. Here c is a normalizing constant.

The distribution
\[
\mu(dx) = c \left(\sqrt{1+x^2}\right)^{\lambda-(1/2)} K_{\lambda-(1/2)} \left(a\sqrt{1+x^2}\right) e^{bx}
\]
on \mathbb{R} or its scale change, where c is normalizing constant, is called *generalized hyperbolic distribution*. Here the domain of parameters is given by $\{\lambda \geq 0, a >$
0, \(|b| < a\) and \((\lambda < 0, a > 0, |b| \leq a\). This distribution reduces to the hyperbolic distribution if \(\lambda = 1\).

Example 5.14 Let \(\{X_t\}\) be Brownian motion with drift \(\gamma\) being zero or non-zero and let \(\{Z_t\}\) be the subordinator with \(\mathcal{L}(Z_1)\) being generalized inverse Gaussian \(\mu_{\lambda, \chi, \psi}\) with \(\lambda = 1, \chi > 0, \psi > 0\). Let us calculate the distribution at \(t = 1\) for the Lévy process \(\{Y_t\}\) subordinate to \(\{X_t\}\) by \(\{Z_t\}\):

\[
P [Y_1 \in B] = c \int_0^\infty e^{-(\chi s^{-1} + \psi s)/2} ds \int_B e^{-(x-s\gamma)/2s} dx
\]

by the calculation in Example 2.13 of [93]. Hence \(\mathcal{L}(Y_1)\) is a hyperbolic distribution with \(a = \sqrt{\chi(\psi + \gamma)}\) and \(b = \sqrt{\chi \gamma}\).

More generally if we assume that \(\mathcal{L}(Z_1)\) is generalized inverse Gaussian \(\mu_{\lambda, \chi, \psi}\), then \(\mathcal{L}(Y_1)\) is generalized hyperbolic distribution. For a proof, use the formula (30.28) of [93] for modified Bessel functions. It follows from Theorem 5.1 (if \(\gamma = 0\)) and Theorem 5.10 (if \(\gamma \neq 0\)) that generalized hyperbolic distributions are selfdecomposable.

5.2 Operator Generalization

For distributions on \(\mathbb{R}^d, d \geq 2\), the concepts of stability, selfdecomposability, and \(L_m\) property are generalized to the situation where multiplication by positive real numbers is replaced by multiplication by matrices of the form \(bQ\).

For a set \(J \subset \mathbb{R}\) let \(M_J(d)\) be the set of real \(d \times d\) matrices all of whose eigenvalues have real parts in \(J\). Let \(Q \in M_{(0, \infty)}(d)\).

Definition 5.15 A distribution \(\mu\) on \(\mathbb{R}^d\) is called \(Q\)-selfdecomposable if, for every \(b > 1\), there is \(\rho_b \in \mathcal{P}(\mathbb{R}^d)\) such that

\[
\widehat{\mu}(z) = \widehat{\mu}(b^{-Q^T}z)\widehat{\rho_b}(z), \quad z \in \mathbb{R}^d,
\]

where \(Q^T\) is the transpose of \(Q\) and \(b^{-Q^T}\) is a \(d \times d\) matrix defined by

\[
b^{-Q^T} = e^{-(\log b)Q^T} = \sum_{n=0}^{\infty} (n!)^{-1} (-\log b)^n (Q^T)^n.
\]

The class of all \(Q\)-selfdecomposable distributions on \(\mathbb{R}^d\) is denoted by \(L_0(Q)\). For \(m = 1, 2, \ldots\) the class \(L_m(Q)\) is defined to be the class of distributions \(\mu\) on \(\mathbb{R}^d\)
such that, for every $b > 1$, there exists $\rho_b \in L_{m-1}(Q)$ satisfying (5.3). Define $L_\infty(Q) = \bigcap_{m<\infty} L_m(Q)$.

It follows that $L_m(Q) = L_m(aQ)$ for any $a > 0$ and $m = 0, 1, \ldots, \infty$.

Proposition 5.16 The classes just introduced form nested classes

$$\text{ID} \supset L_0(Q) \supset L_1(Q) \supset \cdots \supset L_\infty(Q).$$

(5.4)

Proof can be given analogously to the proofs of Propositions 1.13 and 1.15. See Jurek [39] (1983a) and Sato and Yamazato [111] (1985).

Definition 5.17 A distribution μ on \mathbb{R}^d is called Q-stable if, for every $n \in \mathbb{N}$, there is $c \in \mathbb{R}^d$ such that

$$\hat{\mu}(z)^n = \hat{\mu}(nQ^\top z)e^{i(c,z)}, \quad z \in \mathbb{R}^d.$$ (5.5)

It is called strictly Q-stable if, for all n,

$$\hat{\mu}(z)^n = \hat{\mu}(nQ^\top z), \quad z \in \mathbb{R}^d.$$ (5.6)

Let \mathcal{S}_Q be the class of Q-stable distributions on \mathbb{R}^d. Let \mathcal{S}^0_Q be the class of strictly Q-stable distributions on \mathbb{R}^d.

Here we are using the usual terminology, but it is not harmonious with the usage of the word α-stable; μ is α-stable if and only if it is $(\alpha^{-1}I)$-stable, where I is the identity matrix. Similarly to the α-stable case, we have the following.

Proposition 5.18 A distribution μ is Q-stable if and only if $\mu \in \text{ID}$ and, for every $t > 0$, there is $c \in \mathbb{R}^d$ such that

$$\hat{\mu}(z)^t = \hat{\mu}(tQ^\top z)e^{i(c,z)}.$$ (5.7)

A distribution μ is strictly Q-stable if and only if $\mu \in \text{ID}$ and, for every $t > 0$,

$$\hat{\mu}(z)^t = \hat{\mu}(tQ^\top z).$$ (5.8)

Proof is like that of Proposition 1.21.

Remark 5.19 If $\mu \in \mathcal{S}_Q$ for some $Q \in M((0,\infty))(d)$, then μ is called operator stable and sometimes Q is called exponent of operator stability of μ. But, in general, Q is not uniquely determined by μ; see Hudson and Mason [35] (1981) and Sato [86] (1985). If $\mu \in L_0(Q)$ for some $Q \in M((0,\infty))(d)$, then μ is called operator selfdecomposable.

Remark 5.20 Operator stable and operator selfdecomposable distributions appear in a natural way when we study limit theorems for sums of a sequence of independent random vectors, allowing linear transformations (matrix multiplications) of partial sums. Basic papers are Sharpe [113] (1969) and Urbanik [128] (1972a).
Proposition 5.21 Suppose that \(\mu \) is \(Q \)-stable and nondegenerate on \(\mathbb{R}^d \). Then \(Q \) must be in \(M_{(1/2, \infty)}(d) \) and, moreover, any eigenvalue of \(Q \) with real part 1/2 is a simple root of the minimal polynomial of \(Q \); \(\mu \) is Gaussian if and only if \(Q \in M_{(1/2)}(d) \); \(\mu \) is purely non-Gaussian if and only if \(Q \in M_{(1/2, \infty)}(d) \).

This is by Sharpe [113] (1969).

Definition 5.22 For \(Q \in M_{(0, \infty)}(d) \), let \(\mathcal{S}(Q) \) denote the union of \(\mathcal{S}_{aQ} \) over all \(a > 0 \); let \(\mathcal{S}^0(Q) \) denote the union of \(\mathcal{S}_{aQ}^0 \) over all \(a > 0 \). The relation with \(\mathcal{S} \) and \(\mathcal{S}^0 \) in Definition 1.19 is that \(\mathcal{S} = \mathcal{S}(I) \) and \(\mathcal{S}^0 = \mathcal{S}^0(I) \).

The class \(\mathcal{S}(Q) \) is a subclass of \(L_\infty(Q) \). Moreover, we have the following.

Proposition 5.23 The class \(L_\infty(Q) \) is the smallest class containing \(\mathcal{S}(Q) \) and closed under convolution and weak convergence.

Definition 5.24 A Lévy process \(\{ X_t : t \geq 0 \} \) is called \(Q \)-selfdecomposable, \(Q \)-stable, or of class \(L_m(Q) \), respectively, if \(\mathcal{L}(X_t) \) (or, equivalently, \(\mathcal{L}(X_t) \) for every \(t \geq 0 \)) is \(Q \)-selfdecomposable, \(Q \)-stable, or of class \(L_m(Q) \).

Here are results on the inheritance of operator selfdecomposability, \(L_m(Q) \) property, and strict operator stability in some cases. These partially extend Theorem 5.9. Propositions 5.21 and 5.23 are not used in the proof.

Let \(N \) and \(d \) be positive integers satisfying \(d \geq N \geq 1 \). Let \(d_j, 1 \leq j \leq N \), be positive integers such that \(d_1 + \cdots + d_N = d \). Every \(x \in \mathbb{R}^d \) is expressed as \(x = (x_j)_{1 \leq j \leq N} \) with \(x_j \in \mathbb{R}^{d_j} \). We call \(x_j \) the \(j \)-th component-block of \(x \). The \(j \)-th component-block of \(X_t \) is denoted by \((X_t)_j \). As in Sect. 4.3, we use the unit vectors \(e_k = (\delta_{kj})_{1 \leq j \leq N}, k = 1, \ldots, N, \) in \(\mathbb{R}^N \).

Theorem 5.25 Suppose that \(\{ X_s : s \in \mathbb{R}^N_+ \} \) is a given \(\mathbb{R}^N_+ \)-parameter Lévy process on \(\mathbb{R}^d \) with the following structure: for each \(j = 1, \ldots, N \),

\[
(X_{tej})_k = 0 \quad \text{for all } k \neq j. \tag{5.9}
\]

Suppose that \(\{ Z_t : t \geq 0 \} \) is a given \(\mathbb{R}^N_+ \)-valued subordinator and let \(\{ Y_t : t \geq 0 \} \) be a Lévy process on \(\mathbb{R}^d \) obtained by multivariate subordination from \(\{ X_s \} \) and \(\{ Z_t \} \). That is, \(\{ X_s \} \) and \(\{ Z_t \} \) are independent and \(Y_t = X_{Z_t} \). Let \(Q_j \in M_{(1/2, \infty)}(d_j) \) and \(c_j > 0 \) for \(1 \leq j \leq N \), and let \(C = \text{diag}(c_1, \ldots, c_N) \). Assume that, for each \(j \), \(\mathcal{L}((X_{tej})_j) \) is strictly \(Q_j \)-stable. Let

\[
D = \text{diag}(c_1 Q_1, \ldots, c_N Q_N) \in M_{(0, \infty)}(d).
\]

(i) If \(\{ Z_t : t \geq 0 \} \) is \(C \)-selfdecomposable, then \(\{ Y_t : t \geq 0 \} \) is \(D \)-selfdecomposable.

(ii) More generally, let \(m \in \{ 0, 1, \ldots, \infty \} \). If \(\{ Z_t : t \geq 0 \} \) is of class \(L_m(C) \) on \(\mathbb{R}^N \), then \(\{ Y_t : t \geq 0 \} \) is of class \(L_m(D) \) on \(\mathbb{R}^d \).
(iii) If \(\{Z_t : t \geq 0\} \) is strictly \(C \)-stable, then \(\{Y_t : t \geq 0\} \) is strictly \(D \)-stable.

Here \(\text{diag}(c_1, \ldots, c_N) \) denotes the diagonal matrix with diagonal entries \(c_1, \ldots, c_N \); \(\text{diag}(c_1 Q_1, \ldots, c_N Q_N) \) denotes the blockwise diagonal matrix with diagonal blocks \(c_1 Q_1, \ldots, c_N Q_N \).

Proof We use Theorem 4.41. Let \(X_j^t = X_{t e^j} \). Let \(\psi_X(z) = (\log \hat{\rho})(z) \) with \(\rho = \mathcal{L}(X_j^t) \) for \(z \in \mathbb{R}^d \), and \(\psi_X(z) = (\psi_X(z))_{1 \leq j \leq N} \). Let \(\mu_j = \mathcal{L}((X_j^t)_j) \in \mathfrak{P}(\mathbb{R}^{d_j}) \). Then it follows from (5.9) that

\[
e^{i \psi_X(z)} = E e^{i (z, X_j^t)} = E e^{i (z_j, (X_j^t)_j)} = \hat{\mu}_j (z_j),
\]

where \(z = (z_j)_{1 \leq j \leq N} \in \mathbb{R}^d \) with \(z_j \in \mathbb{R}^{d_j} \). Thus

\[
\psi_X(z) = (\log \hat{\mu}_j (z_j))_{1 \leq j \leq N}.
\]

We have

\[
\hat{\mu}_j (z) a = \hat{\mu}_j (a Q_j^T z), \quad a > 0
\]

by the strict \(Q_j \)-stability of \(\mu_j \). Hence

\[
a^C \psi_X(z) = (a^C (\log \hat{\mu}_j (z_j)))_{1 \leq j \leq N} = \psi_X(b^C (a Q_j^T z))_{1 \leq j \leq N}.
\]

(i) Assume \(\{Z_t : t \geq 0\} \) is \(C \)-selfdecomposable. Let \(\Psi_Z \) be the function \(\Psi \) in (4.11) for \(\{Z_t\} \). For \(b > 1 \) and \(w = (w_j)_{1 \leq j \leq N} \in \mathbb{C}^N \) with \(\text{Re} w_j \leq 0 \), Define \(\Psi_{Z,b}(w) \) by

\[
\Psi_Z(w) = \Psi_Z(b^{-C} w) + \Psi_{Z,b}(w).
\]

Similarly to the proof of Proposition 1.13, we can show that \(e^{\Psi_{Z,b}(iu)} \), \(u \in \mathbb{R}^N \), is an infinitely divisible characteristic function. Further, as in Lemma 5.8, there is an \(\mathbb{R}_+^N \)-valued subordinator \(\{Z_t^{(b)}\} \) such that \(E e^{i (u, Z_t^{(b)})} = e^{i \Psi_{Z,b}(iu)} \). In the proof note that \(\gamma_0^0 = (I - b^{-C}) \gamma_0^0 = \text{diag}(1 - b^{-c_1}, \ldots, 1 - b^{-c_N}) \gamma_0^0 \in \mathbb{R}_+^N \). Now we have

\[
E e^{i (z, Y_t)} = e^{i \Psi_Z (\psi_X(z))} = e^{i \Psi_Z (b^{-C} \psi_X(z))} e^{i \Psi_{Z,b}(\psi_X(z))}
\]

and

\[
b^{-C} \psi_X(z) = (\log \hat{\mu}_j (b^{-C} Q_j^T z))_{1 \leq j \leq N} = \psi_X(b^{-D^T} z)
\]

by (5.10), since
\[b^{-D^T} z = \text{diag}(b^{-c_1 Q_1^T}, \ldots, b^{-c_N Q_N^T}) z = (b^{-c_j Q_j^T} z)_{1 \leq j \leq N}. \]

Hence
\[E e^{i(z, Y_t)} = \left(E \exp(i \langle b^{-D^T} z, Y_t \rangle) \right) e^{i \Psi_Z(b \langle z \rangle)}. \]

As the second factor in the right-hand side is the characteristic function of a subordinated process, we see that \(\mathcal{L}(Y_t) \) is \(D \)-selfdecomposable.

(ii) By induction similar to (ii) of Theorem 5.9.

(iii) Assume that \(\{Z_t\} \) is strictly \(C \)-stable, that is, \(a \Psi_Z(w) = \Psi_Z(a C w) \). Then, for \(a > 0 \),
\[E e^{i(z, Y_{at})} = e^{a \Psi_Z(\psi_X(z))} = e^{a \Psi_Z(a C \psi_X(z))} \]
and, as above,
\[a C \psi_X(z) = \psi_X(a D^T z). \]

Hence
\[E e^{i(z, Y_{at})} = E \exp(i \langle a D^T z, Y_t \rangle), \]

which shows \(D \)-stability of \(\{Y_t\} \).

\[\blacksquare \]

Remark 5.26 Let \(Q \in M_{(0, \infty)}(d) \) and let
\[S_Q = \{ \xi \in \mathbb{R}^d : |\xi| = 1, \text{ and } |r Q \xi| > 1 \text{ for every } r > 1 \}. \]

Then any \(x \in \mathbb{R}^d \setminus \{0\} \) is uniquely expressed as \(x = r Q \xi \) with \(r > 0 \) and \(\xi \in S_Q \). Notice that \(S_I \) is the unit sphere \(S \) but \(S_Q \subsetneq S \) for some \(Q \). Let \(\mu \in ID \) with generating triplet \((A, \nu, \gamma)\). Then \(\mu \in L_0(Q) \) if and only if \(QA + AQ^\top \) is nonnegative-definite and
\[v(B) = \int_{S_Q} \lambda(d\xi) \int_0^\infty 1_B(r Q \xi) \frac{k_\xi(r)}{r} dr, \quad B \in B(\mathbb{R}^d), \]
where \(\lambda \) is a finite measure on \(S_Q \) and \(k_\xi(r) \) is nonnegative, decreasing in \(r \in (0, \infty) \), and measurable in \(\xi \in S_Q \). Under the assumption that \(\alpha > 0 \), \(Q \in M_{(\alpha/2, \infty)}(d) \), and \(\mu \) is purely non-Gaussian, we can show that \(\mu \in \mathcal{G}_{\alpha^{-1} Q} \) if and only if
\[v(B) = \int_{S_Q} \lambda(d\xi) \int_0^\infty 1_B(r Q \xi) r^{-\alpha^{-1}} dr, \quad B \in B(\mathbb{R}^d), \]
where \(\lambda \) is a finite measure on \(\mathbb{S}_Q \); this statement does not exclude the possibility that \(\mathcal{S}_{(\alpha - 1)Q} \) is the set of trivial distributions. It follows that, if \(\{Z_t\} \) is a non-trivial \((\alpha^{-1}Q)\)-stable \(\mathbb{R}^d_+ \)-valued subordinator, then \(Q \) is strongly restricted. For example then, under the additional assumption that \(d = 2 \) and \(Q \) is of the real Jordan normal form, \(Q \) cannot be

\[
\begin{pmatrix}
q_1 & 1 \\
0 & q_1
\end{pmatrix}
or
\begin{pmatrix}
q_1 & -q_2 \\
q_2 & q_1
\end{pmatrix}
\]

with \(q_1 > 0, q_2 > 0 \) and thus \(Q \) must be of the form

\[
\begin{pmatrix}
q_1 & 0 \\
0 & q_2
\end{pmatrix}
\]

Notes

Halgreen [30] (1979) and Ismail and Kelker [36] (1979) proved assertion (i) of Theorem 5.1 in the case where \(\{X_t\} \) is Brownian motion on \(\mathbb{R} \). Assertion (iii) of Theorem 5.1 was essentially known to Bochner [14] (1955). Theorem 5.25 was given in Barndorff-Nielsen et al. [8] (2001), but we have given a simpler proof. Assertion (ii) of Theorem 5.1 is a special case of Theorem 5.25 (ii) with \(N = 1 \) and \(Q = Q_1 = (1/\alpha)I \). Theorem 5.9 was shown by Pedersen and Sato [71] (2003) for subordination of cone-parameter convolution semigroups on \(\mathbb{R}^d \).

Theorems 5.9 and 5.10 were extended to subordination of cone-parameter convolution semigroups, respectively, by Pedersen and Sato [71] (2003) and by Sato [100] (2009).

Theorem 5.10 was proved in Sato [94] (2001a). Earlier Halgreen [30] (1979) and Shanbhag and Sreehari [112] (1979) proved it under the condition that \(L(Z_1) \) is a generalized \(\Gamma \)-convolution. Remark 5.12 is by Takano [119] (1989,1990).

Characterization and many related results on general distributions in \(\mathcal{S}(Q) \) and \(L_m(Q) \) are discussed in Sharpe [113] (1969), Urbanik [128] (1972a), Sato and Yamazato [111] (1985), and Jurek and Mason [44] (1993). For characterization of distributions in \(\mathcal{S}^0(Q) \), see Sato [87] (1987).

For \(Q \in \mathcal{M}_0(d) \) with \(d \geq 2 \), consider Eq. (2.13) with \(c \) replaced by \(Q \). Then we can extend the notion of Ornstein–Uhlenbeck type process generated by \(\rho \in ID(\mathbb{R}^d) \) and \(c > 0 \) to that generated by \(\rho \) and \(Q \) in a natural way; the extended process is also called Ornstein–Uhlenbeck type process frequently, but let us call it...
as Q-OU type process. Connections of distributions in $L_m(Q), m = 0, 1, \ldots, \infty,$ with Q-OU type processes are parallel to those of L_m with OU type processes in Chaps. 2 and 3 and the proofs are similar; in fact it was done simultaneously in many papers. However, it was a harder problem to find a criterion of recurrence and transience for Q-OU type processes; it was solved by Sato et al. [104] (1996) and Watanabe [133] (1998).