Chapter 1
The Banach Contraction Principle

Definition 1.1 Let X be a metric space equipped with a distance d. A map

$$f : X \rightarrow X$$

is said to be **Lipschitz continuous** if there is $\lambda \geq 0$ such that

$$d(f(x), f(y)) \leq \lambda d(x, y), \quad \forall x, y \in X.$$

In this case, it is readily seen that there exists the smallest value λ for which the inequality holds, called the **Lipschitz constant** of f.

- If $\lambda = 1$, then f is said to be **non-expansive**.
- If $\lambda < 1$, then f is said to be a **contraction**.

Perhaps the most important result in the theory of fixed points is the celebrated Banach contraction principle (BCP), stated and proved by Banach [4] in 1922 and subsequently -and independently- rediscovered by Caccioppoli [13].

Theorem 1.1 (BCP) Let f be a contraction on a complete metric space X. Then f has a unique fixed point $\bar{x} \in X$.

Proof Note first that if $x, y \in X$ are fixed points of f, then

$$d(x, y) = d(f(x), f(y)) \leq \lambda d(x, y),$$

which implies $x = y$. Choose now any $x_0 \in X$, and define the iterated sequence

$$x_{n+1} = f(x_n).$$
By induction on n,
\[d(x_{n+1}, x_n) \leq \lambda^n d(f(x_0), x_0), \quad \forall n \geq 1. \]

Thus, if $n \in \mathbb{N}$ and $m \geq 1$, recalling that $\lambda < 1$ we have
\[
\begin{align*}
 d(x_{n+m}, x_n) &\leq d(x_{n+m}, x_{n+m-1}) + \cdots + d(x_{n+1}, x_n) \\
 &\leq (\lambda^{n+m-1} + \cdots + \lambda^n) d(f(x_0), x_0) \\
 &\leq \lambda^n \left(\sum_{j=0}^{\infty} \lambda^j \right) d(f(x_0), x_0) \\
 &= \frac{\lambda^n}{1-\lambda} d(f(x_0), x_0).
\end{align*}
\]

Hence x_n is a Cauchy sequence, and admits a limit $\bar{x} \in X$, for X is complete. Since f is continuous, we have
\[
 f(\bar{x}) = \lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_{n+1} = \bar{x},
\]
as claimed. \square

The construction of the approximating sequence x_n above is known as Picard iteration method [62].

Corollary 1.1 The approximating sequence x_n fulfills the estimate
\[
 d(\bar{x}, x_n) \leq \frac{\lambda^n}{1-\lambda} d(f(x_0), x_0).
\]

Proof From the previous proof,
\[
 d(x_{n+m}, x_n) \leq \frac{\lambda^n}{1-\lambda} d(f(x_0), x_0).
\]

Knowing now that $x_n \to \bar{x}$, the claim follows by letting $m \to \infty$. \square

Remark As noted in [56], the inequality established in Corollary 1.1 is important also for the following reason: assume we want to find the fixed point up to an “error” $\varepsilon > 0$, namely, we want to find a point \hat{x} such that
\[
 d(\bar{x}, \hat{x}) < \varepsilon,
\]
where \bar{x} is the actual fixed point. Then, the inequality above allows to find an explicit value of $n \in \mathbb{N}$ for which $\hat{x} = x_n$ will do. Indeed, such an n has to comply with the relation $d(x_n, \bar{x}) < \varepsilon$. Accordingly, we have to take n large enough that
The Banach Contraction Principle 5

\[
\frac{\lambda^n}{1 - \lambda} d(f(x_0), x_0) < \varepsilon.
\]

The quantity \(\varrho = d(f(x_0), x_0) \) is something known right after the first iteration. Hence, recalling that \(\log \lambda < 0 \), the desired \(n \) fulfills

\[
n > \frac{\log \varepsilon + \log(1 - \lambda) - \log \varrho}{\log \lambda}.
\]

The completeness of \(X \) plays a crucial role in the BCP. Indeed, contractions on incomplete metric spaces may fail to have fixed points.

Example Let \(X = (0, 1] \) with the usual distance. Define \(f : X \to X \) as \(f(x) = x/2 \).

Corollary 1.2 Let \(X \) be a complete metric space and \(W \) be a topological space. Let \(f : X \times W \to X \) be a continuous function. Assume that \(f \) is a contraction on \(X \) uniformly in \(W \), that is,

\[
d(f(x, w), f(y, w)) \leq \lambda d(x, y), \quad \forall x, y \in X, \forall w \in W,
\]

for some \(\lambda < 1 \). Then, for every fixed \(w \in W \), the map \(x \mapsto f(x, w) \) has a unique fixed point \(\varphi(w) \). Moreover, the function \(w \mapsto \varphi(w) \) is continuous from \(W \) to \(X \).

Note that if \(f : X \times W \to X \) is continuous on \(W \) for every fixed \(x \in X \) and is a contraction on \(X \) uniformly in \(W \), then \(f \) is automatically continuous on \(X \times W \).

Proof In light of Theorem 1.1, we only have to prove the continuity of \(\varphi \). For \(w, w_0 \in W \), we have

\[
d(\varphi(w), \varphi(w_0)) = d(f(\varphi(w), w), f(\varphi(w_0), w_0))
\leq d(f(\varphi(w), w), f(\varphi(w_0), w)) + d(f(\varphi(w_0), w), f(\varphi(w_0), w_0))
\leq \lambda d(\varphi(w), \varphi(w_0)) + d(f(\varphi(w_0), w), f(\varphi(w_0), w_0)),
\]

which implies

\[
d(\varphi(w), \varphi(w_0)) \leq \frac{1}{1 - \lambda} d(f(\varphi(w_0), w), f(\varphi(w_0), w_0)).
\]

Since the above right-hand side goes to zero as \(w \to w_0 \), we have the desired continuity.

Remark If in addition \(W \) is a metric space and \(f \) is Lipschitz continuous in \(W \), uniformly with respect to \(X \), with Lipschitz constant \(L \geq 0 \), then the function \(w \mapsto \varphi(w) \) is Lipschitz continuous with Lipschitz constant less than or equal to \(L/(1 - \lambda) \).
Theorem 1.1 establishes a sufficient condition in order for f to have a unique fixed point.

Example Consider the map

$$f(x) = \begin{cases}
\frac{1}{2} + 2x & x \in [0, 1/4], \\
\frac{1}{2} & x \in (1/4, 1]
\end{cases}$$

mapping $[0, 1]$ onto itself. Then f is not even continuous, but it has the unique fixed point $\bar{x} = 1/2$.

The next corollary takes into account this situation, providing existence and uniqueness of a fixed point under more general conditions. We first need a definition.

Definition 1.2 For $f: X \to X$ and $n \in \mathbb{N}$, we denote by f^n the nth-iteration of f, namely,

$$f^n = f \circ \cdots \circ f \bigg|_{n \text{ times}}$$

where f^0 is understood to be the identity map.

Corollary 1.3 Let X be a complete metric space, and let $f: X \to X$. If f^m is a contraction for some $m \geq 1$, then f has a unique fixed point $\bar{x} \in X$. Moreover, for every $x_0 \in X$, the sequence $f^n(x_0)$ converges to \bar{x}.

Note that in the previous example $f^2(x) \equiv 1/2$.

Proof Let \bar{x} be the unique fixed point of f^m, given by Theorem 1.1. Then

$$f^m(f(\bar{x})) = f(f^m(\bar{x})) = f(\bar{x}),$$

which implies $f(\bar{x}) = \bar{x}$. Since a fixed point of f is clearly a fixed point of f^m, we have uniqueness as well. The proof of the convergence $f^n(x_0) \to \bar{x}$ is left as an exercise. □

We conclude the chapter discussing the converse to the BCP. Assume we are given a set X and a map $f: X \to X$. We are interested to find a metric d on X such that (X, d) is a complete metric space and f is a contraction on X. Clearly, in light of Theorem 1.1, a necessary condition is that each iteration f^n has a unique fixed point. Surprisingly enough, the condition turns out to be sufficient as well.

Theorem 1.2 Let X be an arbitrary set, and let $f: X \to X$ be a map such that f^n has a unique fixed point $\bar{x} \in X$ for every $n \geq 1$. Then for every $\varepsilon \in (0, 1)$, there is a metric $d = d_\varepsilon$ on X that makes X a complete metric space, and f is a contraction on X with Lipschitz constant less than or equal to ε.

Proof Choose $\varepsilon \in (0, 1)$. Let Z be the subset of X consisting of all elements x such that $f^k(x) = \bar{x}$ for some $k \in \mathbb{N}$. We define the following equivalence relation on the (possibly empty) set $X \setminus Z$: we say that $x \sim y$ if and only if $f^n(x) = f^m(y)$ for some $n, m \in \mathbb{N}$. Note that if

\[f^n(x) = f^m(y) \quad \text{and} \quad f'^n(x) = f'^m(y), \]

then

\[f^{n+m'}(x) = f^{m+n'}(x). \]

But since $x \not\in Z$, this yields $n + m' = m + n'$, that is,

\[n - m = n' - m'. \]

At this point, by means of the axiom of choice, we select an element from each equivalence class. We now define the distance of \bar{x} from a generic $x \in X$ by setting

\[
\begin{align*}
0 & \quad \text{if } x = \bar{x}, \\
\varepsilon^{-k} & \quad \text{if } \bar{x} \neq x \in Z, \\
\varepsilon^{n-m} & \quad \text{if } x \not\in Z,
\end{align*}
\]

where $k = \min \{ p \geq 1 : f^p(x) = \bar{x} \}$, while $n, m \in \mathbb{N}$ are such that $f^n(\hat{x}) = f^m(x)$, where \hat{x} is the selected representative of the equivalence class $[x]$. The definition is unambiguous, due to the discussion above. Finally, for any $x, y \in X$, we set

\[
d(x, y) = \begin{cases}
0 & \quad \text{if } x = y, \\
d(x, \bar{x}) + d(y, \bar{x}) & \quad \text{if } x \neq y.
\end{cases}
\]

It is straightforward to verify that d is a metric. To see that d is complete, observe that the only Cauchy sequences which do not converge to \bar{x} are ultimately constant. We are left to show that f is a contraction with Lipschitz constant equal to ε. Let then $x \in X$, with $x \neq \bar{x}$. We shall distinguish three cases:

- If $x \in Z$ and $f(x) = \bar{x}$, then

\[0 = d(f(x), \bar{x}) < \varepsilon d(x, \bar{x}). \]

- If $x \in Z$ and $f(x) \neq \bar{x}$, then there is the smallest $k \geq 2$ such that

\[\bar{x} = f^k(x) = f^{k-1}(f(x)). \]

Hence,

\[d(f(x), \bar{x}) = \varepsilon^{-k+1} = \varepsilon d(x, \bar{x}). \]
• If \(x \notin Z \), then there are \(n, m \in \mathbb{N} \), and we can take \(m \geq 1 \), such that

\[
\hat{x}^n = \hat{x}^m = \hat{x}^{m-1}(f(x)),
\]

where \(\hat{x} \) is the representative of \([x]\). Hence,

\[
d(f(x), \bar{x}) = \epsilon^{n-m+1} = \epsilon d(x, \bar{x}).
\]

In summary, for every \(x \in X \),

\[
d(f(x), \bar{x}) \leq \epsilon d(x, \bar{x}).
\]

From the definition of the distance, given any \(x \neq y \in X \) we conclude that

\[
d(f(x), f(y)) \leq d(f(x), \bar{x}) + d(f(y), \bar{x})
\leq \epsilon [d(x, \bar{x}) + d(y, \bar{x})]
= \epsilon d(x, y),
\]

as desired. \(\square \)

Theorem 1.2 is due to Bessaga [6]. An alternative proof can be found in the book [18] (pp. 191–192). The argument presented here, indeed much simpler, is due to Peirone [61]. There is an interesting related result for compact metric spaces due to Janoš [37], where an equivalent metric that makes \(f \) a contraction is constructed.